Abnormal histone methylation is responsible for increased vascular endothelial growth factor 165a secretion from airway smooth muscle cells in asthma.

نویسندگان

  • Rachel L Clifford
  • Alison E John
  • Christopher E Brightling
  • Alan J Knox
چکیده

Vascular endothelial growth factor (VEGF), a key angiogenic molecule, is aberrantly expressed in several diseases including asthma where it contributes to bronchial vascular remodeling and chronic inflammation. Asthmatic human airway smooth muscle cells hypersecrete VEGF, but the mechanism is unclear. In this study, we defined the mechanism in human airway smooth muscle cells from nonasthmatic and asthmatic patients. We found that asthmatic cells lacked a repression complex at the VEGF promoter, which was present in nonasthmatic cells. Recruitment of G9A, trimethylation of histone H3 at lysine 9 (H3K9me3), and a resultant decrease in RNA polymerase II at the VEGF promoter was critical to repression of VEGF secretion in nonasthmatic cells. At the asthmatic promoter, H3K9me3 was absent because of failed recruitment of G9a; RNA polymerase II binding, in association with TATA-binding protein-associated factor 1, was increased; H3K4me3 was present; and Sp1 binding was exaggerated and sustained. In contrast, DNA methylation and histone acetylation were similar in asthmatic and nonasthmatic cells. This is the first study, to our knowledge, to show that airway cells in asthma have altered epigenetic regulation of remodeling gene(s). Histone methylation at genes such as VEGF may be an important new therapeutic target.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human airway smooth muscle cells secrete vascular endothelial growth factor: up-regulation by bradykinin via a protein kinase C and prostanoid-dependent mechanism.

Bronchial vascular remodeling is an important feature of the pathology of chronic asthma, but the responsible mechanisms and main sources of angiogenic factors are unclear. Here we report that human airway smooth muscle cells express vascular endothelial growth factor (VEGF)121, 165, 189, 206 splice variants and secrete VEGF protein constitutively. VEGF protein secretion was increased by the pr...

متن کامل

Vascular endothelial growth factor-induced secretion of fibronectin is ERK dependent.

In severe asthma, cytokines and growth factors contribute to the proliferation of smooth muscle cells and blood vessels, and to the increased extracellular matrix deposition that constitutes the process of airway remodeling. Vascular endothelial growth factor (VEGF), which regulates vascular permeability and angiogenesis, also modulates the function of nonendothelial cell types. In this study, ...

متن کامل

CXCL8 histone H3 acetylation is dysfunctional in airway smooth muscle in asthma: regulation by BET

Asthma is characterized by airway inflammation and remodeling and CXCL8 is a CXC chemokine that drives steroid-resistant neutrophilic airway inflammation. We have shown that airway smooth muscle (ASM) cells isolated from asthmatic individuals secrete more CXCL8 than cells from nonasthmatic individuals. Here we investigated chromatin modifications at the CXCL8 promoter in ASM cells from nonasthm...

متن کامل

In vitro studies of lymphangioleiomyomatosis.

Lymphangioleiomyomatosis (LAM) is associated with abnormal airway smooth muscle that leads to the characteristic pathology of lung nodule formation and destruction of lung tissue. The current authors have previously identified abnormal behaviour of airway smooth muscle cells from patients with asthma. In this study, cells and tissue sections derived from patients with LAM (n=7), asthma (n=8), a...

متن کامل

Human airway smooth muscle cells secrete amphiregulin via bradykinin/COX-2/PGE2, inducing COX-2, CXCL8, and VEGF expression in airway epithelial cells.

Human airway smooth muscle cells (HASMC) contribute to asthma pathophysiology through an increased smooth muscle mass and elevated cytokine/chemokine output. Little is known about how HASMC and the airway epithelium interact to regulate chronic airway inflammation and remodeling. Amphiregulin is a member of the family of epidermal growth factor receptor (EGFR) agonists with cell growth and proi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of immunology

دوره 189 2  شماره 

صفحات  -

تاریخ انتشار 2012